产品中心您现在的位置:首页 > 产品展示 > 电能质量监测与治理 > APF有源电力滤波装置 > 有源电力滤波柜50A

有源电力滤波柜50A

更新时间:2020-01-11

简要描述:

有源电力滤波柜可以消除谐波,谐波使公用电网中的元件产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,甚至引起火灾。

分享到: 1

  随着电力电子变流装置的应用日益广泛,电能得到了更加充分的利用,但非线性电力装置设备的广泛应用产生了大量畸变的电流谐波,谐波污染越来越多地威胁到电力系统安全、稳定、经济运行,给同一网络的线性负载和其它用户带来了极大影响。烟草工业在生产制造过程中,使用大量的变频器进行调速,变频器所产生的谐波,对厂区配电室的供电网造成了一定的影响

  1 执行编制

  GB/T14549-1993 《电能质量:公用电网谐波》

  GB/T15543-2008 《电能质量:三相电压不平衡度》

  GB/T12325-2008 《电能质量:供电电压偏差》

  GB/T12326-2008 《电能质量:电压波动和闪变》

  GB/T18481-2001 《电能质量:暂时过电压和瞬态过电压》

  GB/T15945-2008 《电能质量:电力系统频率偏差》

  GB17625.1-2012 《电磁兼容 限值 谐波电流发射限值》

  GB/T15576-2008 《低压成套无功功率补偿装置》

  2 产品介绍

  2.1 工作原理

  ANAPF系列有源电力滤波器并联在含谐波负载的低压配电系统中,能够对动态变化的谐波电流进行快速实时的跟踪和补偿。其原理为:ANAPF系列有源电力滤波器通过CT采集系统谐波电流,经控制器快速计算并提取各次谐波电流的含量,产生谐波电流指令,通过功率执行器件产生与谐波电流幅值相等方向相反的补偿电流,并注入电力系统中,从而抵消非线性负载所产生的谐波电流。

图2-1  ANAPF有源电力滤波器原理图

  2.2 产品特点

  ●  DSP+FPGA全数字控制方式,具有极快的响应时间,先进的主电路拓扑和控制算法,精度更高、运行更稳定;

  ●  一机多能,既可补谐波,又可兼补无功,可对2~31次谐波进行全补偿或特定次谐波进行补偿;

  ●  具有完善的桥臂过流保护、直流过压保护、装置过温保护功能;

  ●  模块化设计,体积小,安装便利,方便扩容;

  ●  采用7英寸大屏幕彩色触摸屏以实现参数设置和控制,使用方便,易于操作和维护;

  ●  输出端加装滤波装置,降低高频纹波对电力系统的影响;

  ●  多机并联,达到较高的电流输出等级;

  2.3 主要技术参数

  表2-1 ANAPF有源电力滤波器技术参数

  2.4 产品型号及说明

  4 应用案例

  4.1 ANAPF 在数据机房的应用

  ▲ 项目背景:

  常熟智慧城市是一个市民卡信息中心,其中包括大型数据机房,对电能质量要求非常高;为了提高供电可靠度,采用大量的UPS作为设备电源,机房内还包含空调设备、照明设备等。此类电力电子设备皆属于非线性负载,在使用过程中会产生大量谐波并注入系统中,主要以5次、7次为主;如果不进行谐波治理,对电网造成严重的污染,也影响机房中其他敏感设备,比如导致通信数据错误,甚至瘫痪、中断,降低了配电系统的安全性、可靠性。

  ▲ 治理方案:

  根据以往测量经验进行谐波分析与估算,谐波主要由UPS和一些非线性直流电源产生,供电系统由2台800kVA变压器及其一台800kW发电机组成,采用集中治理方案,在每台变压器下加装300A有源电力滤波器,由两台150A并机实现,型号为ANAPF150-380/BGL,来自动跟踪补偿负载产生的谐波电流,保证整个系统安全可靠运行。

  ▲ 治理效果:

图4-1治理之前A、B、C、N相电流波形和电流频谱

  由图可以看出,治理前,N线电流较大,3次、5次、7次等谐波频次含量较大;治理后,N线电流明显降低、各次谐波电流得到有效抑制,提高了供电系统的稳定性,消除了谐波对通信系统影响的危害,收到了良好的运行效果。

  ▲ 安装现场:

图4-2 安装现场

  4.2 ANAPF在办公楼宇的应用

  ▲ 项目背景:

  珠海横琴口岸项目是临时边检大楼的新建项目,为边检部门电气设备提供可靠电力支持,对电能质量要求较高;用电设备主要是大功率UPS、LED显示屏、空调、照明和报检大厅动力设备等,会产生大量谐波,其谐波主要包括3、5、7、9次;不进行合理治理,将对其他电气设备产生危害,如:大量的3次谐波造成中线过热甚至发生火灾;大量谐波造成变压器局部严重过热;继电保护发生误动作等。

  ▲ 治理方案:

  根据以往测量经验进行谐波分析与估算,谐波主要由UPS和一些非线性直流电源产生,该项目有1#、2#两个配电站,1#配电站有2台800kVA的变压器,2#配电站有2台1000KVA的变压器,分别采用集中治理方案,在每台变压器下加装ANAPF系列有源电力滤波器,由于安装空间有限,选择我司壁挂式有源电力滤波器进行嵌入式安装,1#配电站中#1和#2变压器下安装型号均为ANAPF75-380/BBL,2#配电站中#1和#2变压器下安装均为2台型号为ANAPF60-380/BBL的有源电力滤波器并机使用,保障了整个供电系统的稳定性。

  ▲ 治理效果:

图4-4治理之后电流波形和各次谐波电流畸变率

  治理前电流波形发生畸变,三相电流畸变率分别为10.8%、11.1%、12.5%;在加装ANAPF系列有源电力滤波器后电流波形趋向正弦波,各次谐波得到有效抑制,电流畸变率明显降低,三相电流畸变率降至4.0%、4.1%、4.4%。

  ▲ 安装现场:

  4.3 ANAPF在工业领域的应用

  ▲ 项目背景:

  合肥日立建机是日立建机集团在中国的生产基地,其主要负载是变频器、电焊机和中频炉等,这类负载属于中污染设备,使用时电流变化很快,无功需求大,传统无功柜跟不上负载变化速度,导致功率因数很低,造成无功罚款;同时又会产生大量谐波流入电网中,谐波电流在线路上流动会产生压降,使得电压也畸变严重,致使一些精度高的生产设备不能正常运行,影响公司的生产,导致产品质量下降,给客户带来严重的经济损失。

  ▲ 治理方案:

  该项目共有6台变压器,均采用集中治理方案,在变压器的出线侧加装ANAPF系列有源电力滤波器,型号为:ANPF200-380/BGL,既可补偿谐波又可补偿部分动态无功。同时,建议在变频器的进线端加装输入电抗器,用来滤除部分变频器谐波,以达到更好的治理效果。

  ▲ 治理效果:

  由图4-5和图4-6可以看出,治理前,电流波形失真十分严重,三相电流畸变率分别为21.3%、25.0%、28.0%,主要以5次、7次、11次等符合6n±1次特性的谐波为主,功率因数约0.83左右,会造成无功罚款;加装ANAPF系列有源电力滤波器后,电流波形已经趋向正弦波,三相电流畸变率分别为2.6%、2.6%、2.6%,主要频次谐波得到有效抑制,功率因数也都到很明显的提高。此次谐波治理,电网质量得到明显改善,有效地保护了生产线上设备的正常运行。

  ▲ 安装现场:

4.4  ANAPF在港口码头的应用

  ▲ 项目背景:

  江阴港港口的主要谐波源是门机、行车和一些办公设备,门机在运行时需要大量无功,且电流冲击大,波动很快,产生大量的谐波电流,功率因数很低,造成无功罚款;传统的纯容无功补偿装置已经不能解决这些电能质量问题,不及时治理,甚至会对无功柜产生危害,使得电容寿命降低,更换频繁。

  ▲ 治理方案:

  因现场非线性负载(经检测,主要为起重机回路)多,且具有地域分散,冲击电流大的特点,易采用集中治理方式,在每个变电站进行谐波治理。采用无功功率补偿和谐波治理综合方案可兼顾无功补偿和谐波治理功能,该方案利用现有无功补偿控制柜,减少用户改造投入成本,将ANAPF系列有源电力滤波装置并联到配电系统中,一方面可有效抑制谐波放大,保护电容器,而装置的检修与日常维护只需从电网中切除,不影响现场的正常运营。

  ▲ 治理效果:

  由图4-7和图4-8可以看出,治理前,电流波形失真十分严重,呈现典型的M型,三相电流畸变率分别为18.3%、25.1%、32.5%,主要以5次、7次谐波为主;加装ANAPF系列有源电力滤波器后,电流波形已经趋向正弦波,三相电流畸变率分别为2.6%、2.6%、2.6%,主要频次谐波得到有效抑制,电网质量得到明显改善,有效地保护了其他电气设备。

  ▲ 安装现场:

  4.5 ANAPF在商业中心的应用

  ▲ 项目背景:

  无锡恒隆广场属于大型商业建筑,主要负载是中央空调、电梯和照明设备等,由于变频器高效的节能性,使用大量变频器驱动这些设备,但同时会产生大量3次、5次、7次等谐波电流。谐波电流在线路上流动产生压降,使得电压也跟着畸变,电压畸变率超过国标限值,供电质量相当糟糕,影响其他用电设备的正常使用,现场会出现灯具闪烁的现象。

  ▲ 治理方案:

  无锡恒隆广场该配电系统中共有2台2000KVA的变压器,均采用集中治理方案,在变压器的出线侧加装400A的ANAPF系列有源电力滤波器,使用2台200A并机实现,型号为:ANPF200-380/BGL。

  ▲ 治理效果:

图4-9治理前电流波形

图4-10治理后电流波形

  从图4-9和图4-10可看出,治理前电流波形发生畸变,出现多出锯齿状;治理后电流波形明显得到改善,趋向标准正弦波,电能质量达到很大提高,给用电带来保障。

  3 产品应用

  3.1 容量计算方法

  谐波是由非线性设备产生的,而每种设备的实际工作状态都不同。因此实际谐波电流需采用专门设备进行测量,考虑到设备的技术及经济性,设计谐波治理装置的额定谐波补偿电流应略大于系统谐波电流。由于谐波电流本身的测量与计算比较复杂,况且在设计时往往很难采集到足够的电气设备使用中的谐波数据,可以根据下列公式估算谐波电流进行选型。

  3.1.1 根据负载额定电流和行业类型选型

  3.1.2 根据变压器容量和行业类型选型

  3.1.3 根据快速选型表查表选型

  查表步骤:

  步骤1:确定变压器容量和变压器负载率(一般在0.6~0.8);

  步骤2:根据变压器负载率确定表2、表3或表4;

  步骤3:确定电流总谐波畸变率(THDi)(表1中THDi值为参考值,仅在估算谐波电流时使用);

  步骤4:根据变压器容量及THDi参考值确定相应的谐波电流值;

  步骤5:考虑到一定的裕量,选择相应容量的ANAPF有源电力滤波器。

  注:表1~表4参见附录1。

  3.2 选型示例

  上海某工厂办公大楼变压器容量为250KVA,变压器负载率为0.8,主要负载为节能灯、变频空调和电梯等,属于办公楼宇。

  变压器容量为250KVA;

  变压器负载率为0.8;

  负载类型属于办公楼宇,根据表1估算THDi为30%;

  查表4可得估算谐波电流值为83A;

  如果根据公式(2)计算,结果是一样的;

  考虑到一定的裕量,选择100A的ANAPF有源电力滤波器。

  3.3 治理方式分类与说明

  电能质量监测与治理系统针对不同的场合可选择不同的治理方案,一般有集中治理、局部治理和就地治理三种技术方案。

  (一)集中治理

集中治理上图示例

  本案例是在变电所低压电容柜中设置无功补偿,同时在配电前端设置有源电力滤波器,采用集中治理的方式抑制谐波。

  集中治理适用于单台设备谐波含量小,但数量庞大、布局分散的场合,比如办公大楼(个人电脑、节能灯、变频空调、电梯等),虽然单台设备的电流小,谐波含量低,但整栋大楼的总电流大,总谐波电流也大。

  (二)局部治理

局部治理上图示例

  本案例是在变电所低压电容柜中设置无功补偿,同时在局部谐波源前端设置有源电力滤波器,采用局部治理的方式抑制谐波。

  局部治理适用于谐波源集中在某一条或几条馈出支路的配电系统,比如医院的精密仪器、UPS电源等,虽然单台设备的电流小,谐波含量低,但为防止其他设备产生的谐波对其干扰,采用局部谐波治理。

  (三)

就地治理上图示例

  本案例是在变电所低压电容柜中设置无功补偿,同时在主要谐波源的前端设置有源电力滤波器,采用就地治理方式的抑制谐波。

  就地治理适用于谐波源比较明确且单台设备谐波含量较大的配电系统,比如大型商业区的景观照明、影剧院的可控硅调光设备、工业区的变频器调速设备等,单台设备电流大、谐波含量高、谐波电流大,为防止谐波电流影响其他用电设备,采用就地治理。

  安科瑞是一家为企业用户的能源(电、水、气或其他能源)消耗提供用能数据服务的集成商。结合企业用户能源供配系统的特点,为每一个用户量身设计能源计量系统,搭建精细合理的能源监测体系。系统的建设与投运可在能源可靠供应、用能合理和用电安全等方面解决用户关注的痛点,帮企业实现能源使用数据的可视化管理,为企业今后节能措施的引进实施提供科学的数据支撑。

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7